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Abstract

This paper1 describes an architecture for a system for machining and inspecting mechanical piece parts and an implementation of it called

the Feature-Based Inspection and Control System (FBICS). In FBICS, the controller of a machining center or coordinate measuring machine

uses a standard feature-based description of the shape of the object to be made as a principal input for machining and/or inspection. FBICS is

a hierarchical control system and performs automated hierarchical process planning. FBICS serves: (1) to demonstrate feature-based

inspection and control in an open-architecture control system; (2) as a testbed for solving problems in feature-based manufacturing; and

(3) to test the usability of STEP methods and models. q 2001 Published by Elsevier Science Ltd.
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1. Introduction

This paper describes an architecture for a system for

machining and inspecting mechanical piece parts, and an

implementation of it developed at the National Institute of

Standards and Technology (NIST). The system is called the

Feature-Based Inspection and Control System (FBICS).

This paper covers all aspects of FBICS. Other papers and

reports on FBICS include: a much deeper overall descrip-

tion of FBICS [1]; a brief overview of FBICS [2]; a view of

FBICS as used in an inspection workstation [3]; and a

discussion of process planning in FBICS [4].

1.1. FBICS summarized

While the architecture is quite general, FBICS as imple-

mented controls a machining center or coordinate measur-

ing machine (CMM). FBICS uses a feature-based

description of the shape of the object to be made or

measured as a principal input for machining and/or inspec-

tion. As used in FBICS, a feature is a volume whose shape is

an instance of some member of a prede®ned set of shape

typesÐa hole or a pocket, for example. The prede®ned set

is an international standard which is part of STEP, the Stan-

dard for the Exchange of Product Model Data.

The primary purposes of FBICS are:

1. to demonstrate feature-based control of inspection and

machining in an open-architecture system;

2. to serve as a testbed for solving problems in feature-

based manufacturing, particularly the partitioning of

manufacturing activities into separate activities, the de®-

nition of interfaces between activities, the expression of

process plans, and the automatic generation of process

plans; and

3. to test the usability of STEP methods and models.

FBICS exists both as (1) a stand-alone system using mini-

mally functional controllers but fully functional planners,

with simulated inspection or machining, and (2) as part of

three loosely integrated systems using the same planners but

more fully functional controllers with graphically simulated

inspection, actual inspection, and actual machining. Soft-

ware for all versions of FBICS is in the C11 language.

Machines run using FBICS include a 3-axis `mini-mill'

machining center, a Bridgeport 3-axis machining center, a

hexapod machining center, and a Cordax coordinate

measuring machine.

The two principal capabilities of FBICS are: to generate

process plans automatically at each level of a control hier-

archy; and to execute the plans in order to make and/or

inspect piece parts.
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1.2. Approach to machining and inspecting mechanical

piece parts

We focus here on piece part production in small batches

using commercial off-the-shelf machines, as in a typical job

shop (but we would put FBICS controllers on the machines).

Work activity falls in two large sections: design and manu-

facturing. Manufacturing activity may be divided into

manufacturing planning and manufacturing execution. Plan-

ning includes task planning, resources planning, and sche-

duling. Execution includes resource allocation and task

execution. FBICS deals with (1) manufacturing task plan-

ning, and (2) manufacturing task execution where fabrica-

tion is done by machining and inspection is done either on a

machining center or on a coordinate measuring machine.

In many job shops, task planning is divided between two

groups. The ®rst group (called process planning) usually

does high-level planningÐwhich portions of the shop

should do which portions of the fabrication. The second

group (called programming) usually does generation of

machine control programs for cutting and inspection (a

form of planning). FBICS also divides task planning, but

into three levels rather than two. FBICS aims for more

automated operation, improved use of feedback, and tighter

integration, as compared with typical job shops.

High-level process plans used in industry are generally

sequential process plans. Each plan is a simple list of steps,

all steps must be performed, and they must be done in the

order they appear on the list. Such plans are not usable by

computers and do not allow for alternative, parameters, or

using current data during plan execution. High-level plans

in FBICS are tree-like plans using alternatives, parameters,

and current data. They are two-stage plans that may be

executed by computers.

Integration of subsystems is a major problem in manu-

facturing, generally, and in piece-part manufacturing, parti-

cularly. It would be desirable to be able to compose

manufacturing systems using as subsystems entire commer-

cial systems or modules of commercial systems. Composing

systems this way using subsystems from different compa-

nies is often not possible because (1) commercial systems

are usually not built to be compatible with systems from

other sources upstream, downstream, or laterally, (2) when

commercial systems are modular, the interfaces between

their modules are usually not open, so that modules must

be bought from a single vendor or cooperating vendors, (3)

even when commercial systems are modular and open, the

data formats used at the interfaces are not standard, so only

modules that support several formats are likely to be widely

usable, and (4) the behavior of each module is often not

fully speci®ed. In addition, the algorithms underlying the

behavior of each module are usually not disclosed. This

does not prevent the use of modules, but knowledge of the

underlying algorithms would facilitate their use by allowing

the user to predict behavior and performance.

Most users would prefer to be able to mix and match

subsystems, as one does with audio systems. This is possible

only if there are open, standardized interfaces allowing the

subsystems to work together.

1.3. Needs FBICS seeks to meet

FBICS seeks to provide the following desirable charac-

teristics for piece-part manufacturing systems in an open-

architecture environment.

1. Tight integration of separate modules.

2. Agreed-on module de®nition, at the right granularity and

with open interfaces.

3. Easily constructed feedback loops.

4. Full utilization of the abilities of both computers and

humans.

5. Full use of available data.

6. Use of standard data representations and modeling

languages.

7. Effective use of off-line and on-line planning.

2. FBICS background

2.1. Real-time control system (RCS) architecture

For many years, the Intelligent Systems Division (ISD) at

NIST has been developing a control architecture known as

the Real-time Control System (RCS) architecture. Under the

tenets of RCS [5±7], controllers are arranged in a hierarchy.

Each controller, save one at the top, is subordinate to a

single superior controller, and each controller may have

several subordinates. Those at the bottom of the hierarchy

have no subordinate controllers but control actuators.

Controllers interact by superior controllers sending

commands to subordinates, in response to which the subor-

dinates perform actuation or send commands to their subor-

dinates and send status back. Each controller performs some

type of real-time planning, which may range from selecting

a pre-made plan without change to totally generative plan-

ning.

The ®eld of discrete parts manufacture is amenable to

RCS control, and FBICS conforms to the RCS architecture.

In RCS, each controller includes components that perform

sensory processing, world modeling, planning, job assign-

ment, and execution. The emphasis in FBICS development

has been on planning and world modeling.

2.2. Machine control languages

Standard machine control languages exist: RS274 for

machining [8,9]; and Dimensional Measuring Interface

Standard (DMIS) for inspection [10]. Interpreters for these

languages were developed at NIST independently of the

FBICS project [11,12]. Since the languages are standard

and interpreters were available, these two languages have

been used in FBICS.
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2.3. Architecture and knowledge engineering projects

The Intelligent Systems Division has a continuing project

in RCS architecture development. This project has provided

much of the support for the development of FBICS. The

architecture project has provided support, as well, for the

development of RCS controller templates. Controllers built

using the templates have been used both in a version of

FBICS in which planning functions are integrated with

simulated inspection and actual machining and in a version

of FBICS used to control a CMM, part of an integrated

inspection workstation.

The Knowledge Engineering Program is studying world

modeling and knowledge representation issues in intelligent

control. Jointly with the Architecture Project, it developed

an integrated inspection workstation [3] which incorporated

FBICS.

2.4. Enhanced machine controller project

The objective of the NIST Enhanced Machine Controller

(EMC) project, conducted in ISD, is to build a testbed for

evaluating application programming interfaces (APIs) for

open-architecture machine controllers. FBICS has been

supported by the EMC project and is being used as a compo-

nent of the testbed. In prior work, the EMC project built a

machine tool controller and retro®tted a 4-axis machining

center at General Motors with it [13]. That controller and

variants of it are called `the EMC controller.' EMC control-

lers have been installed on several machining centers in

commercial machine shops. The EMC controller incorpo-

rates an NC-program interpreter [12] for programs written

in the RS274 language.

2.5. Earlier work at NIST leading to FBICS

The Vertical Workstation System (VWS) of the NIST

Automated Manufacturing Research Facility, developed

between 1986 and 1989, was a feature-based system for

piece-part machining [14]. It included a design-by-feature

subsystem. Software for the system was written in Lisp.

The Off-Line Programming System (OLPS) was an NC-

code generation system developed between 1988 and 1990

intended to be used in a larger system in which machining

features are de®ned separately from the design [15]. A

library of parametric machining features was de®ned for

use with OLPS [16]. OLPS code was written in Lisp.

In 1995 and 1996 a prototype Feature-Based Control

System was developed which included many of the

elements of FBICS [17]. It served to show the feasibility

of feature-based control, but did not include many key

FBICS elements.

In the late 1980s and early 1990s, the Department of

Defense supported a `Next Generation Controller' (NGC)

project. ISD prepared a report `NIST Support to the Next

Generation Controller Program: 1991 Final Technical

Report' [18], containing a variety of suggestions. Appendix

C proposed three sets of commands for 3-axis machining,

one set for each of three proposed hierarchical control

levels. The suite proposed for the middle level of control

evolved into the one used in FBICS for Workstation-level

tasks, described in Fig. 2. The suite proposed for the lowest

control level evolved into a suite, known in the EMC project

as the `canonical machining functions,' for 3-axis to 6-axis

machining [19]. This suite is used in FBICS in the NC-code

interpreter.

The ALPS language (A Language for Process Speci®ca-

tion) was developed at NIST [20]. ALPS is a domain-inde-

pendent language for writing process plans for discrete

operations. Additions to ALPS, and EXPRESS models

containing them, were made by the NIST Manufacturing

Systems Integration (MSI) project [21]. The MSI project

also developed resource concepts which have been used in

FBICS.

As part of a Rapid Response Manufacturing program at

NIST, a model for cutting tools and tooling components was

developed. The requirements speci®cation document [22]

was translated into an EXPRESS model. This model, with

modi®cations, is being used in FBICS. Efforts for standar-

dization of cutting tool data, based on the model, are in

progress in Technical Committee 29 Working Group 34 of

the International Organization for Standardization (ISO

TC29/WG34). The developing standard is ISO 13399.

2.6. STEP

STEP (Standard for the Exchange of Product Model

Data) is the common name for standard 10303 of the Inter-

national Organization for Standardization (ISO). This stan-

dard is composed of individual documents known as STEP

`Parts.' STEP Part 11 de®nes the EXPRESS data modeling

language [23]. An EXPRESS model de®nition is contained

in one or more constructs called EXPRESS `schemas.'

STEP Part 21 de®nes an exchange ®le format for transmit-

ting instances of data which has been modeled in EXPRESS

schemas [24]. STEP also provides data models for various

domains. The models fall in several classes. The class of

model intended to be used is called an `Application Proto-

col' (AP).

2.6.1. AP 224

STEP AP 224, the ISO standard for `Mechanical Product

De®nition for Processing Planning Using Machining

Features' [25] is being used in FBICS. AP 224 is largely a

speci®cation of a library of machining features, but also

provides for de®ning machining features in terms of a

boundary representation and provides for related data,

such as design_exceptions and requisitions. FBICS uses

the library but does not use the boundary representation

method. The library de®ned in AP 224 is quite similar to

that de®ned in [16].

The AP 224 feature library provides 51 parametric `manu-

facturing_features' including, for example: boss, chamfer,
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circular_pattern, compound_feature, counterbore_hole,

countersunk_hole, edge_round, ®llet, general_pattern,

general_pocket, groove, pocket, rectangular_pattern, rectan-

gular_pocket, round_hole, slot, spherical cap, thread. Each

manufacturing_feature has a stereotypical shape governed

by several parameters. To specify a round_hole, for example,

the parameters include diameter, hole_depth, and bottom

condition (among others). A particular instance of a round_-

hole is de®ned by specifying a value for each parameter. The

AP 224 feature types implemented in FBICS are round_hole,

counterbore_hole, and rectangular_pocket. Implementation

of many other feature types from AP 224 are expected to

be feasible.

The EXPRESS schema used in FBICS for STEP AP 224

is a schema provided by the person who was the ISO

`owner' of AP 224 while it was being developed. The

schema has been modi®ed slightly. In STEP terms, it is an

Application Reference Model (ARM) type of model.

AP 224 provides two general types of tolerance: (1) toler-

ances on numeric parameters; and (2) geometric and dimen-

sional tolerances. In the ®rst case, the tolerance is an

attribute of a parameter which is an attribute of a feature.

The hole_depth of a round_hole, for example, may be a

numeric_parameter_with_tolerance. In the second case,

each tolerance is a self-standing entity which may be

applied to more than one feature, and several tolerances

may apply to the same feature. The geometric and dimen-

sional tolerances are a full suite of tolerances from ASME

Y14.5.

AP 224 STEP Part 21 ®les are used in FBICS for designs

of piece parts (starting, ®nished, or partially ®nished) and

for feature sets, as shown in Table 2. Each ®le is expected to

de®ne a single (AP 224) Part. The shape of a piece part is

determined by its base shape as modi®ed by a list of

features. When an AP 224 ®le is used to describe a design

in FBICS, the features are assumed to be closed solids

which are Boolean subtracted from the base shape to deter-

mine the Part shape. When an AP 224 ®le is used to contain

a feature set, the base shape is simply ignored.

2.6.2. AP 203 and AP 214

AP 203 covers con®guration controlled design. A large

portion of it provides a method of describing the design of a

part in a boundary representation. AP 214 is a huge data

model that includes all of the content of STEP APs 203 and

224 and much more. AP 203 is used for some purposes in

FBICS and is used in many commercial systems. AP 214 is

not used in FBICS, but is used in some similar systems, as

described below.

2.7. Other integrated systems

A comparison of FBICS with other integrated systems is

shown in Table 1. The table lists all the major capabilities of

FBICS, plus a few capabilities that it would be desirable to

add to FBICS, and shows which of these capabilities are

possessed by various other systems. Some of these systems

have capabilities not listed in the table that FBICS does not

have. Table 1 includes systems from universities and

commercial ®rms in addition to FBICS. Understand that

in cases where commercial systems and non-commercial

systems perform similar functions, the commercial systems

almost always have much broader and deeper functionality.

As may be seen in Table1, two FBICS traits shared by no

other system are its embedding in a hierarchical control

system and its use of multistage process planning. Few of

the other systems are aimed at both inspection and machin-

ing, and only one other uses feedback from inspection to

machining. Those that use STEP data use AP 203 and/or

AP214. None of the others uses STEP AP 224 features.

2.7.1. Commercial integrated systems

Commercial systems exist that perform many of the func-

tions of FBICS. Only a few of the larger and more similar

(to FBICS) of them are covered here. In addition to these,

there are several dozen systems that generate NC code for

machining, and a handful that generate code for inspection.

The commercial integrated systems included in Table 1 are

modular. The various functional modules share a common

database. In most cases, users may purchase different

combinations of modules. To avoid the appearance that

NIST is evaluating commercial systems, the commercial

systems included in Table 1 are not identi®ed by name,

and references to them are not included in this paper. The

information in Table 1 regarding commercial systems was

extracted from archival papers, web sites, demonstrations,

and a little direct system use.

2.7.2. Academic integrated systems

The information in Table 1 on university systems was

extracted from the sources cited in the text of this section.

It is possible that the systems do less or more than indicated

in the table.

The Purdue University Quick Turnaround Cell (QTC)

[26±28] has many capabilities in common with FBICS.

With it, a knowledgeable user can design and machine a

simple part in an hour or two. Early versions of the QTC

were described as including vision inspection.

Cybercut at U. C. Berkeley is similar in function to the

Purdue QTC but includes touch probe inspection and may

be used over the internet [29±31].

An Intelligent Machining Workstation (IMW) has been

built at Ohio University [32]. This differs from the other

integrated systems described here in that it uses several

large subsystems from different vendors: (1) for design,

any CAD system that will output a STEP ®le; (2) the

ICEM Part system for process planning and NC-code

generation; (3) Deneb's Virtual NC for NC-code veri®ca-

tion; (4) Cognition's Cost Advantage cost estimator; and (5)

An Oracle database. The transition from a STEP design

output to suitable input for the Part system requires manual
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assistance. Other details about the interfaces between

subsystems are not provided.

The Simultaneous Engineering Workstation (SEW), built

at the University of Abertay Dundee, integrates design-by-

feature with automated feature-based process planning and

NC-code generation [33].

3. FBICS architecture

The FBICS controller hierarchy, shown in Fig. 1, is

generally as described in RCS literature. In stand-alone

FBICS, levels of controller are included at the RCS Cell,

Workstation, and Task levels. In integrated FBICS, addi-

tional levels (Elementary move, Primitive, and Servo) are

also present. Each controller runs in a separate process or

processes (in the operating system sense). Processes may be

on the same computer or different computers. Controllers

communicate via a messaging system.

This hierarchy corresponds to the way many large

machine shops actually run. The shop is divided into groups

of machines, each called a cell. A cell is expected to be able

to make and inspect a ®nished part from a starting work-

piece. A cell includes several workstations. Each worksta-

tion has a principal machine and, possibly, auxiliary

machines. Each machine can perform several types of

task, each task is composed of several elementary moves,

each elementary move is decomposed into primitive

motions, and each primitive motion is controlled by a

servo system.

In addition to the controllers, a Solid Modeling Server

(Modeler, for short), a Data Repository, and a Graphic

Display are included. The Modeler works for the planners,

in the Cell, Workstation, and Task controllers. The Graphic

Display is connected directly only to the Modeler.

Commands for displaying solid objects are available to

the three planners, but they are addressed to the Modeler.

The FBICS architecture is designed to allow for human

participation at every signi®cant step of the process.

Elements of this include using appropriate data types at

each interface between control levels, having an open ®le

format for all data types passing across interfaces, having
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Table 1

FBICS compared to other systems

Traita System

FBICS Commercial A Commercial B Commercial C Cybercut IMW Purdue QTC SEW

Control system included X 0 0 0 X 0 X 0

Coord. Measuring machine

targeted/used

X 0 0 X 0 0 0 0

Design system included 0 X 0 X X X X X

Machining feature recognition

auto.

0 0 X 0 0 X 0 0

Feedback from inspection used X 0 0 0 X 0 0 0

Fixturing selected automatically L 0 X 0 X X X 0

Hierarchical control used X 0 0 0 0 0 0 0

Inspection control code

generated auto.

X 0 0 X L 0 0 0

Inspection performed X 0 0 X L 0 L 0

Machining control code

generated auto.

X X X X X X X X

Machining parameters selected

auto.

X X X X X X X X

Machining center targeted/used X X X X X X X X

Multiple setups handled

automatically

X 0 X 0 L X L 0

Processing planning multistage X 0 0 0 0 0 0 0

Process plans generated

automatically

X L X 0 X X X X

Rule-based methods used L X X 0 X X 0 X

Setup ®les generated

automatically

X 0 0 0 X X X 0

Simulation graphics shown X X X X 0 X X 0

Solid modeler used X X X X X X X X

STEP data used X X X X 0 X 0 0

Tolerances on features used X X X X X X X X

Tools selected automatically X X X 0 X X X X

User-friendly interfaces to data

included

0 X X X X X X X

a X� has trait; L� has limited trait; 0� does not have trait (as documented).



variable planning depth, and allowing either off-line or on-

line planning. The user-friendly editors and interfaces

required for effective human participation in FBICS activ-

ities, however, have not been built.

The notion of a `set up' is central to FBICS. A setup is a

®xturing of a workpiece on the table of a machining center

or coordinate measuring machining. The workpiece does

not move with respect to its ®xturing during a single

setup. It does move from one setup to the next. Some

parts can be handled in a single setup, but more commonly,

two or more setups are required.

The ALPS process plan language is used for plans at the

Cell and Workstation levels. The fundamental object of

ALPS is the plan. A plan is a recipe for performing a speci®c

task. A plan in ALPS is a one-level breakdown of a task into

subtasks, expressing the requirements of each subtask and

its interrelation with other subtasks in the plan. A plan

contains a set of nodes (or steps) which provide sequencing

information and detail how to perform the task in terms of

individual subtasks. Every plan has an associated target

system which may execute the plan. ALPS provides for

parallel operations, alternatives, synchronization of events,
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parameters, and resource allocation. To make ALPS usable

in FBICS, two suites of subtypes of the ALPS primitive_-

task_node have been added to ALPS. One suite, for the

Workstation level, is discussed in Section 5. The other

suite, for the Cell level, includes only one subtype:

run_setup.

The stand-alone FBICS architecture is shown in Fig. 1. In

stand-alone FBICS, emphasis has been placed on the plan-

ning component of each controller. A clean, small, function

call interface has been de®ned for each planner, to be used

by the rest of the controller. In the stand-alone version, the

rest of each controller includes only enough functionality to

make the system run and to help with debugging during

development.

Fig. 1 shows only one subordinate for each superior

controller, since that is how stand-alone FBICS is built. In

general, in RCS, each superior controller may have several

subordinates. The FBICS Task-level controller might be

readily split into two task-level controllers, one for a

machining center and one for a coordinate measuring

machine, for example.

The `command message' arrows on Fig. 1 show the direc-

tion of ¯ow of commands. In every case (although no return

arrows are drawn), a status message ¯ows back to the issuer

of the command. Almost all the status messages are simple,

meaning `I did it', or `I could not do it.' Status messages

from the Solid Modeling Server may be more meaty. Many

of them include a Boolean yes/no answer to a question,

some include a single numerical value, and others include

several related values.

3.1. Cell Controller

The (top-level) Cell Controller is focused on making a

part from a part blank or on inspecting an entire previously

made part. The Cell Controller can (1) make a Cell-level

process plan for the part, (2) execute a Cell-level process

plan, (3) give planning commands to the Workstation

Controller, and (4) give execution commands to the Work-

station Controller.

3.2. Workstation Controller

The (second-level) Workstation Controller handles a

single setup of the part (i.e. processing the part without

moving it). The Workstation Controller focuses on trans-

forming a workpiece from an incoming shape to an outgoing

shape, possibly with intermittent inspection, or on inspect-

ing those features that may be inspected in a single setup.

The Workstation Controller can (1) make a Workstation-

level process plan for one setup, (2) execute a Worksta-

tion-level process plan, (3) give planning commands to

the Task Controller, and (4) give execution commands to

the Task Controller.

3.3. Task Controller

The (third-level) Task Controller focuses on making or

inspecting single features. The Task Controller can make a

Task-level process plan for machining one feature or

inspecting one feature. At the Task level, a machining

process plan is an NC-code ®le (in the RS274 language),

and an inspection plan is an inspection code ®le (in the

DMIS language). The Task Controller can execute Task-

level plans.

In stand-alone FBICS, the Task Planner is split between

two processes. The Fbics_Task2 process contains the parts

of the planner that run during plan execution. During execu-

tion, the Fbics_Task process sends messages to the Fbic-

s_Task2 process, telling it to run a ®le of RS274 code or

DMIS code. Splitting the planner between two processes

was originally done for convenience. The split has been

kept in stand-alone FBICS so that loose integrations are

easy to build. In the loose integration that has been used

most, messages that would be sent to the Fbics_Task2

process in the stand-alone are redirected to another Task-

level controller.

The FBICS_Task2 process includes version three of the

NIST DMIS interpreter and version three of the 3-axis NIST

RS274/NGC interpreter.

The two messages Fbics_Task2 understands are `run a

DMIS ®le' and `run an NC ®le'. In response to these

messages, the appropriate interpreter reads the ®le and

executes the instructions in the ®le. In the stand-alone

version, this results in some degree of emulation of machin-

ing or inspection.

3.4. Solid modeling server

The Solid Modeling Server (often shortened to `Modeler'

in this document) provides solid modeling services to its

clients, which are the controllers. The Modeler maintains

a separate view of the shape of objects for each client. The

types of service the Modeler provides include, for example,

maintaining a model of the current shape of the part, facet-

ing a model and telling the Graphic Display to show it, and

determining if a candidate touch point for probing is present

on the current part. The Parasolid solid modeler serves as

the underlying modeling engine.

3.5. Graphic Display

The Graphic Display shows 2D views of 3D objects on a

color monitor, using the `movie camera' paradigm [34].

Display of objects is handled by the Modeler and Graphic

Display jointly. For each type of object to display, the

Modeler facets the object, writes a modeling ®le and

sends a message to the Graphic Display, telling the Graphic

Display to read the ®le and display it as directed by the user.

The display serves to let the user see how planning or execu-

tion is progressing. The display is manipulable by the user in

the usual ways: move around the object; zoom in or out, etc.
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The types of object which can be shown are: intended

outgoing part shape; incoming part shape; current part

shape; feature shape; feature access volume; and ®xture

shape. Each object type may be displayed as a solid object,

as a wire frame, or not at allÐunder immediate control of

the user. The HOOPS graphics system is the underlying

graphics engine.

3.6. Data Repository

FBICS uses a ®le system as the Data Repository. Data in

the repository includes, for example, part designs, process

plans, and user option ®les. During FBICS operation, data

®les are written by one process and read by others. Data ®les

are used as a supplement to messaging for sending

commands from one controller to another. Using a ®le

system as the Data Repository has been fully adequate. As

FBICS matures it may become desirable to use a database

system for the Data Repository, but the need has not yet

arisen.

3.7. Interfaces between FBICS modules

An FBICS module is a set of related computer code for

performing functions of the system. FBICS uses three types

of interfaces between modules: application programming

interfaces (APIs); messaging interfaces; and ®le interfaces.

An API is a set of functions calls available for use between

modules. A messaging interface is a set of messages that

may be sent between processes by interprocess communica-

tion methods. A ®le interface is a set of ®le types which may

be written by one process and read by another. For inter-

process communication, FBICS uses a messaging interface

in every case [35], with most of them being supplemented

by a ®le interface.

The Cell, Workstation, and Task planners in FBICS each

have an API for calls to the planner. The DMIS and RS274/

NGC interpreters included in the Fbics_Task2 process have

APIs. The Modeler has an API interface, but, since the

Modeler is in a separate process, its API is wrapped in

messaging interface.

All interfaces between modules are documented in detail

in Ref. [1], except the interpreter interfaces, which are

explained in Refs. [11,12].

3.8. User interfaces

As shown in Fig. 1, stand-alone FBICS has user interfaces

to the three controllers and to the Graphic Display. The user

interface to the Graphic Display has the capabilities

mentioned above and is totally mouse-driven. The stand-

alone version's user interfaces to the controllers are all

simple text-based interfaces that allow the user to exercise

the two principal functions of the controller: plan or

execute.

3.9. Integrated FBICS

Loosely-integrated versions of FBICS have been built

with all upper-level components as just described, except

for Fbics_Task2. For a loosely-integrated version, the Fbic-

s_Task2 process is replaced by a fully functional RCS

controller that includes an RS274 interpreter and/or a

DMIS interpreter. For an integration with inspection, the

message interface between Fbics_Task and Fbics_Task2 is

used unaltered. For an integration with machining, the inter-

face is modi®ed. The fully functional RCS controllers

control actual hardware for cutting or inspection [36].

A proposed architecture for tightly-integrated versions of

FBICS is described in Ref. [1].

4. Two-stage planning

FBICS employs two-stage planning at the Cell, Worksta-

tion and Task levels. The use of two-stage planning is driven

by the desirability of using ¯exible plans, combined with the

requirement of doing hierarchical planning.

A ¯exible plan is a plan with variables, alternatives,

and (possibly) omissions. Omissions might include omit-

ting tool-changing and coolant commands from stage-one

plans; FBICS makes these omissions. Using ¯exible plans

solves the common problem that in the discrete parts and

other domains where the formulation of plans is costly in

time or money, it is desirable that process plans be reusa-

ble. If conditions under which plans are executed may

change in a way that affects the utility of plans, however,

completely ®xed process plans may not be reusable. At

least four types of data may change: (1) sensory dataÐ

e.g. temperature; (2) resource dataÐe.g. the tools in a

machine carousel; (3) job dataÐe.g. the number of

widgets to make now; and (4) planning system behavior

dataÐe.g. which rule to use to set feed rates. If any of

these types of data affects planning, a ®xed plan will

become obsolete when the data changes.

In FBICS, the stage-one plans prepared in the Cell and

Workstation planners are ¯exible plans written in ALPS. A

¯exible plan is expected to be usable for an extended time

under a variety of conditions whose variability is embodied

in the variables and omissions of the plan. In addition to

providing for changeable conditions, a stage-one plan may

leave alternatives open because the planning system recog-

nized alternatives but elected not to choose among them.

When all alternatives seem equally desirable to a planner,

rather than making an arbitrary decision, it seems a better

strategy to defer making a decision. Then an executor with

better information or a stronger opinion will have the oppor-

tunity to exercise its judgement.

A stage-one plan may be executed directly. When the

plan is executed, it is traversed one step at a time. For

each step of the plan, one or more executable operations

are executed (by physical action or by sending commands
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to a subordinate). By waiting for each command to be

executed before selecting the next step to run, the executor

allows for using up-to-date values of plan variables. In

FBICS, each executable operation is executed by ®rst telling

the subordinate to make a plan to carry out the operation and

then telling the subordinate to execute the plan it just made.

If either the subordinate's planning or its execution is unsuc-

cessful at any point, execution of the superior's plan fails

and is stopped.

A disadvantage of executing a ¯exible plan directly is

that, for each command sent to a subordinate, it may be

necessary for the subordinate to make a plan from

scratch for carrying out a command received from its

superior. If the subordinate planner cannot make such a

plan, execution of the superior plan fails. A second

disadvantage of executing a ¯exible plan directly is

that, if it is executed more than once under the same

conditions, after the ®rst execution, the subordinate

will be needlessly making the same plans over again,

entailing needless cost.

If conditions will not change for a period of time

during which the superior's plan is to be executed one

or more times, it is, therefore, useful to prepare a stage-

two plan for the superior and a set of stage-one plans in

the subordinate. To do this, the superior's stage-one plan

is traversed, producing a set of executable operations by

selecting a speci®c sequence of tasks from among alter-

natives in the stage-one plan, selecting speci®c resources

where the stage-one plan has generic resources, and ®ll-

ing in blanks where the stage-one plan has omitted

items. The subordinate makes a plan for carrying out

each of the superior's executable operations. The super-

ior makes an ordered list of pairs, one for each of the

executable operations. Each pair consists of the subordi-

nate plan name and the name of the type of executable

operation. This list is the stage-two plan for the super-

ior. FBICS Cell and Workstation-level stage-two plans

are modeled very simply and do not use ALPS. Model-

ing stage-two plans in ALPS would be easily done but

cumbersome.

Another reason for having stage-two plans is to support

optimizing plans across a hierarchy. To perform optimi-

zation over a hierarchy via standard search methods, a

stage-one plan allowing for all cases to be tested is

prepared for the top controller. Partial search plans

(plan traversals) are constructed through this top-level

plan. For each node (plan step) on a partial search path

at the top level, the next level down is told to ®nd an

optimum execution. The total cost of any one search

path at the top level is the direct cost of the path to the

top level plus the cost of each node on the path to the

subordinate(s) that handles it. The subordinate controllers

follow exactly the same procedure in determining their

own optimums. To support this type of search, it is neces-

sary to have a format for recording the optimum path. The

stage-two plan provides that format.

5. FBICS Workstation tasks

A suite of tasks has been de®ned to be used in ALPS

stage-one process plans at the FBICS Workstation level.

These tasks are the leaf nodes of the supertype-subtype

tree shown in Fig. 2. The tasks are divided into two main

subtypes: two for inspection and 16 for machining. In the

®gure, the root of the tree is the ALPS primitive_task_node.

This is actually a leaf node in the generic ALPS supertype-

subtype tree, which is not shown.

In Fig. 2, tasks are shown in boldface type. Supertypes

are connected to subtypes by lines, with the supertype

higher on the page. Attribute names are shown in italic

type. Data types of attributes are not shown. Only leaf

nodes may be instantiated. To ®nd all attributes of a task,

trace down the tree from `primitive_task_node' to the task,

and include the attributes of every node along the path, in

order.

Each task includes a pointer to an AP 224 feature on

which the task is to be performed. The form of the pointer

is the index number of the feature from the list of features

included in the features ®le used in the same setup as the

process plan. The attribute containing the pointer is named

removal_volume_index.

The two subtypes of inspection_task are inspect_fea-

ture_surface and inspect_feature_geometry. Only inspect_-

feature_geometry has been implemented.

Of the machining tasks, FBICS currently handles coun-

terboring, ®nish_mill (for rectangular pockets), ®nish_mil-

l_adaptive, and twist_drill.

For stage-two Workstation plans, 24 types of executable

operation are de®ned. Seventeen of these correspond one-

to-one with 17 stage-one tasksÐall but ®nish_mill_adap-

tive, whose execution requires three executable operations

(®nish_mill, inspect, ®nish_mill). The other seven executa-

ble operations include coolant control for machining, and

three matching pairs (one for inspection and one for machin-

ing) for starting a program, changing a tool, and stopping a

program.

6. FBICS data ®les

All the data languages employed by FBICS are text-

based, using ASCII characters; no binary formats are

used. Two types of languages are used: those described

using STEP with semantics in EXPRESS; and grammar

and syntax from STEP Part 21, and those (such as DMIS

and RS274) described in a single speci®cation covering

semantics, syntax and grammar.

Table 2 shows all the ®le types used in FBICS. All

®les except the four marked No EXPRESS Schema are

STEP Part 21 ®les corresponding to the schemas listed in

Table 2. STEP AP 203 and AP 224 are ISO standards.

The tool catalog is being standardized in ISO. The four

types not modeled in EXPRESS are DMIS input format,

T.R. Kramer et al. / Computer-Aided Design 33 (2001) 653±669 661



DMIS output format, RS274, and the graphics ®le

format.

7. FBICS operation

This section describes (1) what happens during FBICS

initialization, (2) how planning three levels deep for

machining with inspection is done, (3) what the special

problems of inspection planning are, (4) what happens

during execution of the Cell-level stage-one plan made in

item 2, and (5) how adaptive machining has been imple-

mented.

7.1. FBICS initialization

FBICS is brought to a warm state when the user gives the

shell command `fbics' in a terminal window. This starts the

various independent processes and establishes communica-

tions among them.

FBICS is initialized when the user gives an initialization

command to the Cell Controller. This causes initialization

command messages to be sent down hierarchically, with

each controller in the hierarchy sending an initialize

command to its subordinate, and each subordinate sending

an OK message to its superior when it has completed its

initialization. During initialization, each planner cleans up

its world model, sets default values for various world model

parameters, and reads various ®les. The Cell Planner reads

the shop_options ®le and resets any inspection and machin-

ing parameters in its world model that have values in that

®le. The Workstation Planner does the same with the

shop_options ®le, but in addition, reads the tool catalog,

tool inventory, and tool_usage_rules ®les named in the

shop_options ®le. The Task Planner reads the shop_options

®le, the tool inventory and tool catalog ®les, and a task_op-

tions ®le.

7.2. Planning three levels deep for machining with

inspection

The most complex form of FBICS planning occurs when

the Cell Controller is told to plan three levels deep including

both machining and inspection, so that type of planning is

described here. It is assumed that this type of processing will
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be performed by a machining center equipped with cutting

tools and a touch-trigger probe. Other types of planning for

a machining center are similar but simpler, usually includ-

ing a subset of the three-level planning activities.

7.2.1. Cell controller planning

When the user gives a plan_part command to the Cell

Controller, the user provides the ®le name of the design of

the part to be made, the ®le name of the design of the

incoming workpiece, a ¯ag indicating whether the incoming

workpiece design ®le already exists or should be written, the

base name for setup ®les, the base name for plan ®les, the

name of the ®xture ®le to use, and the number of levels to

plan. We are assuming here that the number of levels is

three. The general plan of attack is to make a stage-one

Cell-level plan ®rst, then make a stage-two plan from the

stage-one plan, giving planning commands to the Worksta-

tion Controller as the stage-two Cell-level plan is made.

To make a stage-one plan, the Cell Controller reads the

®les describing the design of the part to be made and the

incoming workpiece. The Cell Controller makes a few

initial checks, such as requiring that the shape to be made

is contained in the incoming workpiece and winnowing

down the features to be made by throwing out those

whose intersection with the initial workpiece is empty.

The set of features to be made is divided into subsets

called direction-sets, all of whose native z-axes point in

the same direction (since these are all machinable from

the same direction). Some of the features to be made will

block access to making other features in the same direction-

set or other direction-sets. Blocking features must be made

before blocked features. With the help of the Modeler, an

analysis of the blocking situation is made. Using the results

of this analysis, the features to be made are assigned to

setup-sets (each of which is either an entire direction-set

or a subset of a single direction-set) and the setup-sets are

partially ordered. The partial ordering is captured in a Cell-

level stage-one ALPS process plan. The plan nodes that are

partially ordered are all run_setup nodes, one for each setup-

set.

For each run_setup plan node, a meta®le called a setup

®le is made and its name is recorded in the run_setup node.

Several data ®les referenced in the setup ®le are made, as

well, including (1) a ®le describing the features to be made

in the setup, (2) a ®le describing the shape of the workpiece

coming into the setup (if there is only one possible such

shape), and (3) a ®le describing the shape of the workpiece

leaving the setup (if there is only one possible such shape).

The names of these additional ®les are recorded in the setup

®le along with the base name of a Workstation plan for

making the features, the name of a ®xture ®le, and the

direction of the setup-set.

To make a stage-two plan, the Cell traverses the stage-one

plan. Each plan step the Cell decides to do next is a

run_setup step, so one of two types of run_setup operation

is put into the stage-two plan. Since three levels are being

planned, a run_setup2 operation (indicating a stage-two

Workstation plan should be run) is used and a stage-two

Workstation plan is named in the operation. Also during

the traversal, the Cell determines the shape of the incoming

and outgoing workpiece for each setup. If either shape was

unknown when the setup ®le for the setup was written, the
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Table 2

FBICS data in ®les

Model name Item modeled File writers File readers EXPRESS schemas

AP203 Fixture User, CAx (i.e. CAD/CAM/

CAE) system

Workstation & Task planners ap203

AP 224 Initial workpiece User, Cell Planner All 3 planners arm224

In-process workpiece Cell Planner Workstation & Task planners

Final part User, CAx system All 3 planners

Features Cell Planner Workstation Planner

Cell Stage-1 Plan Cell stage-1 plan Cell Planner Cell Planner fbics_combo, fbics_alps

Cell Stage-2 Plan Cell stage-2 plan Cell Planner Cell Planner fbics_combo

DMIS input format Control code for inspection Task Planner (Fbics_Task) Task Planner (Fbics_Task2) No EXPRESS schema

DMIS output format Results of inspection Task Planner (Fbics_Task2) Task Planner (Fbics_Task2) No EXPRESS schema

Graphics ®le Access volumes, features,

®xture, ®nal part, workpieces

Modeler Graphic Display No EXPRESS schema

RS274/NGC Control code for machining Task Planner (Fbics_Task) Task Planner (Fbics_Task2) No EXPRESS schema

Setup Setup Cell Planner All 3 planners setup

Shop options Shop options User All 3 planners shop_options

Task options Task options User Task Planner task_options

Tool catalog Tool catalog User Workstation & Task Planners tool_catalog

Tool inventory Tool inventory User Workstation & Task Planners fbics_combo, expressions

Workstation stage-one plan Workstation stage-one plan Workstation Planner Workstation Planner fbics_combo, fbics_alps,

arm224

Workstation stage-two plan Workstation stage-two plan Workstation Planner Workstation Planner fbics_combo

Workstation executable

operations

Workstation executable

operation

Workstation Planner Task Planner fbics_combo



setup ®le is rewritten and a ®le (or two) describing the

previously unknown shape(s) is written. The Cell then

commands the Workstation to make a plan two hierarchical

levels deep for the (now fully speci®ed) setup.

7.2.2. Workstation controller planning

Each time the Cell Controller commands the Workstation

Controller to plan a setup two levels deep, the Workstation

Controller ®rst makes a stage-one plan for the setup, then

makes a stage-two plan from the stage-one plan (generating

command ®les to be used later by the Task Controller as it

builds its stage-two plan). Finally, the Workstation Control-

ler traverses its stage-two plan.

To make a stage-one plan, the Workstation Controller

®rst reads the setup ®le. This tells it what the name of the

plan it writes should be, as well as the names of ®les to read.

The Workstation Controller reads the ®les and calls on the

Modeler to set up solid models of all parts and features in

the correct orientation. Then the Workstation Controller

analyzes the feature blocking situation and constructs a

partial ordering for making the features. It also decides

which features are to be inspected. For each feature to be

machined, the Workstation Controller selects a machining

operation appropriate to make the feature and a type of

cutting tool with which to perform the operation. Values

are selected for tool use parameters (feed, speed, etc.). For

each feature to be inspected, the Workstation Controller

selects an inspection operation and a touch-trigger probe

with which to perform the operation.

To make a stage-two plan, the Workstation Controller

traverses the stage-one plan. For each step of the stage-

one plan the Workstation Controller decides to execute,

the Workstation Controller de®nes one or more Task-level

operations required to accomplish that step. For each opera-

tion, the Workstation Controller writes a ®le describing the

operation.

Finally, the Workstation Controller traverses the stage-

two plan and, for each operation, sends a planning command

to the Task Controller.

7.2.3. Task controller planning

When the Task Controller receives an open_setup

command, it reads the setup ®le whose name is received

with the command, reads the ®les describing the incoming

part and ®xture, and calls the Modeler to model the incom-

ing part and ®xture.

A generate_nc command includes (1) the name of a ®le

describing the machining operation and feature to make and

(2) the name of an NC-code ®le to write. When the Task

Controller receives a generate_nc command, it reads the

input ®le, calls the Modeler to model the feature and the

workpiece as it will be when that feature is subtracted from

it, and calls an NC-code generator to write the output ®le.

A generate_dmis command includes (1) the name of a ®le

describing the inspection operation and feature to inspect

and (2) the name of a DMIS code ®le to write. When the

Task Controller receives a generate_dmis command, it calls

a DMIS code generator to write the output ®le. DMIS

generation details are given in Section 7.3.4.

The Task Controller does not make stage-two plans. A

Task-level stage-two plan would be a list of canonical

machining and/or inspection commands as generated by

the DMIS and RS274 interpreters. Since sensory data

from the next lower control level often affect the generation

of canonical commands, pre-generated lists of canonical

commands are usually not valid.

7.3. Inspection planning

The behavior of the system when planning for pure

inspection is much the same as in machining planning.

One factor makes inspection planning easier: the workpiece

does not continually change shape during processing. A

second factor makes inspection planning harder: until it is

decided which features are to be inspected, it is not known

whether any proposed setup will be required. Thus, the Cell

Controller must use the same decision rules as the Work-

station Controller while the Cell Controller plans inspection

setups. Using the same decision rules is implemented by

putting them in the shop_options ®le, which is used by

both controllers.

In machining planning, deciding what to do is simpleÐ

every bit of material in all the features not already on the

workpiece has to be removed. In inspection planning, decid-

ing what to do is not so simple. Which AP 224 features

should be inspected? How thoroughly should they be

inspected? When should they be inspected? The approach

to these questions taken in FBICS is that there is no `right'

answer, so let the user decide. This is implemented by user

preference ®les and (if user preferences specify it) by asking

the user on a case-by-case basis.

7.3.1. Which features to inspect

Options regarding which features to inspect are used in

the Workstation Planner. Five choices are provided in the

shop_options ®le: (1) inspect all features; (2) inspect no

features; (3) inspect any feature with any parameter having

any tolerance; (4) inspect any feature which has any para-

meter with a tight tolerance; and (5) let the user decide for

each feature. The de®nition of what is a `tight' tolerance for

milling is another user option.

7.3.2. How thoroughly to inspect a feature

It is impossible to inspect every point on a surface, so a

decision must be made on which points to inspect. FBICS

uses the qualitative idea of high, medium, and low inspec-

tion intensity. The user may specify in the task_options ®le

how many points to inspect at each of these three levels for

each DMIS feature type.

7.3.3. When to inspect

FBICS currently inspects each feature immediately after
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cutting. This wastes time, since doing it requires that the

tool be changed and the coolant turned on or off before and

after every cutting operation. For complex parts, waiting to

inspect until cutting is complete might also be wasteful,

since if any cutting operation spoils the part, all the follow-

ing cutting operations are wasted effort. An option for how

many features to cut before inspecting any features to be

inspected has been de®ned and may be included in shop_op-

tions ®les, but the information is not used in the current

implementation.

7.3.4. DMIS code generation from AP 224 features

The DMIS language de®nes a number of surface features.

These include plane, cylinder, cone, and sphere, among

others. These are simpler than features de®ned in AP 224,

which has, for example, pocket and hole. To generate DMIS

code from AP 224 features, it is necessary to decompose the

surface of each AP 224 feature into a set of DMIS features.

The surface of the prototypical AP 224 pocket, for example,

may be decomposed into nine DMIS features: ®ve planes

(four sides and a bottom) and four cylinders (the corners of

the pocketÐeach is a quarter cylinder). For each DMIS

feature present in principle, DMIS code is written (1) to

de®ne the feature, (2) to measure the feature, and (3) to

report the results of the measurement. If the feature is a

cylinder with a diameter tolerance (inherited from a toler-

ance on the corner radius of an AP 224 pocket), DMIS code

is also written to de®ne the tolerance, calculate the error in

the diameter, and report whether the cylinder diameter is in-

tolerance or not.

7.4. Executing a stage-one cell-level plan

This section describes what happens when the user tells

FBICS to execute the stage-one Cell-level plan for machin-

ing described in Section 7.2. Stage-two plan execution,

which is much simpler (essentially: do the operations on

the list in order) is not described in this paper, but is in

Refs. [4,11].

During execution of a stage-one Cell-level plan, the Cell

Controller traverses the plan one step at a time. For each

plan step (they are all run_setup steps), the Cell Controller

®rst sends a plan_setup command to the Workstation

Controller, and then a run_setup command (indicating a

stage-one plan should be used) immediately after. The

way in which the Cell Controller traverses its stage-one

plan and disambiguates data is identical to the way it is

done in preparing a stage-two plan from a stage-one plan

(described in Section 7.2.1). A slightly different naming

convention is used for the disambiguated data, which is

intended to be short-lived in the case of executing a stage-

one plan.

For each plan_setup command it receives, the Worksta-

tion Controller makes a stage-one plan exactly as described

in Section 7.2.2. For each run_setup (using a stage-one plan)

command it receives, the Workstation Controller reads the

stage-one plan and traverses the stage-one plan (also exactly

as described in Section 7.2.2), writing operations ®les as

described in that section. During execution, however, as

soon as each operation is selected, the Workstation Control-

ler ®rst sends a generate_nc or generate_dmis command to

the Task Controller then sends an execute_nc or execute_d-

mis command immediately afterwards.

Generating NC code and DMIS code in the Task Control-

ler is the same during executing as during planning. Execut-

ing the code is done only during execution. As shown in Fig.

1, the Task Controller includes two separate processes.

Code generation is performed entirely by the Fbics_Task

process. Code execution is performed entirely by the Fbic-

s_Task2 process. For each generate_nc command it receives

specifying that an AP 224 feature should be cut, the Task

Controller reads the ®le describing the operation and gener-

ates the tool path to use to cut the feature. Tool use para-

meters are given in operation ®les for cutting. Thus, the

code that is generated may include commands to reset the

values of spindle speed or feed rate. For each generate_dmis

command the Task Controller receives specifying that an

AP 224 feature should be inspected, the Task Controller

generates code as described in Section 7.3.4. For each

execute_dmis or execute_nc command the Task Controller

receives, the Task Controller (by call to either the DMIS

interpreter or the RS274 interpreter) interprets the ®le

named in the command, adjusts its internal model appropri-

ately, and makes calls to canonical machining or inspection

functions. In stand-alone FBICS, these canonical calls

simply print themselves and update a dummy external

world model required by the interpreter. In integrated

FBICS, the canonical calls are used for machine control

and actual cutting or inspection.

7.5. Feedback from inspection to planning

FBICS includes using feedback from inspection to plan-

ning, as follows. If there is a tight tolerance on any of the

length, width, or corner radius of a pocket to be ®nish-

milled, the Workstation Planner puts a ®nish_mill_adaptive

step for milling the pocket in the stage-one plan. Both a

cutting tool and a probe tool are used in the step. Tool-use

parameters for both tools are also included. When opera-

tions are created for carrying out that step during execution

of the plan, three primary operations are de®ned (in addition

to tool changing and coolant control, if needed). The ®rst

primary operation is to ®nish mill a test pocket in the same

place as, but slightly smaller than the speci®ed pocket. The

second is to inspect the test pocket, and the third is to ®nish

mill the ®nal pocket. When the Task Controller executes the

DMIS ®le for inspecting the test pocket, the DMIS inter-

preter (because the inspection program says to do so) writes

a ®le containing the results of the inspection. Before gener-

ating code for the ®nal cut on the pocket, the Workstation

reads this ®le. A correction factor for the ®nal cut is calcu-

lated as the average error in the radii of the four corners of
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the test pocket. If the test pocket corner radii were too big on

average, NC code is written so the ®nal cut is made inside

the nominal tool path for the ®nal pocket by the correction

factor. If the test pocket radii were too small, NC code is

written so that the ®nal cut is outside the nominal path by the

correction factor.

8. Results and a simple example

FBICS has been tested successfully with simulated

machining and inspection using moderately complex parts,

including the much-used ANC101 and TEAM test parts.

Integrated tests with machining or inspection have not

been as complex. Planning to depth two for machining the

51-feature the TEAM part with in-process inspection of six

holes (starting with a featureless block) and executing the

plans in simulation results in one Cell plan, Workstation

plans for eight setups, 157 NC-code ®les, nine DMIS ®les,

and associated data. A total of 373 ®les is written. On a Sun

SPARCstation 20, planning the TEAM part took 16 min and

execution took 12 min. Over 90% of the time is used in the

Modeler and Graphics Display. Results for the ANC101 part

are similar. Describing the processing of the TEAM or

ANC101 part would take far too much space.

This section, therefore, provides a much simpler example

of FBICS in action. The example part, `simple_part', is a

block with a pocket on top and a hole on one side. A picture

of simple_part is shown in Fig. 3. This example involves

stage-one plans only. Planning one level deep for simple_-

part (Cell only) took 15 s on a Sun SPARCstation 20.

Executing the Cell plan (which triggers Workstation level

planning for two setups, as well as NC-code generation and

simulated execution) took 50 s. For simple_part, 41 ®les are

written, as summarized in Fig. 3B. An abbreviated descrip-

tion of what happens during planning and execution for

simple_part follows. All mention of what the Modeler and

Graphics Display do is omitted.

Planning for the simple part is started by typing the

following command at the user interface for the Cell

controller: plan_part(simple_part.stp, OFF, block.stp,
plans, feats, ®1, setups, 1). The 1 at the end of this

command means that FBICS should plan one level deep

(i.e. at the Cell level only). The name of the AP 224

STEP Part 21 ®le giving the design of this part to make is

simple_part.stp. The data section of this ®le is shown in

Fig. 3A. OFF means that the ®le giving the design of the

shape to start with (block.stp) does not yet exist and should

be created. plans is the root name for process plan ®les to

write (including ALPS, DMIS and RS724 ®les). feats is the

root name for feature ®les to write. ®1 is the name of the

®xture to use, which must already exist. setups is the root

name for setups to write.

To carry out this command, the Cell planner:

1. Reads simple_part.stp and builds a `feature_plus'Ða

structure with additional data about the featureÐfor

each feature of simple_part.

2. Creates the starting shape for machining by making a

copy of the base shape of simple_part and writes the

®le block.stp.

3. Divides the features into sets which may be made in one

setup and puts the sets into batches which may be in any

order. In the case of simple_part there are two sets (each

containing one feature) and one batch (containing both

sets).

4. Makes a Cell-level stage-one plan and prints it to the ®le

plans_1cell.stp. The data section of this ®le and the graph

of the plan are shown in Fig. 3C and D. The plan indi-

cates that the two setups may be made in any order.

5. Makes a setup ®le for each of the two setup, setups_1.stp

and setups_2.stp. The structure (not the text) of

setups_2.stp is shown in Fig. 3E. The setups_1.stp ®le

is similar. Because the two setups may be made in any

order, it is not known what the incoming or outgoing part

will be for either setup (hence the `not_set' entries in Fig.

3E), although it is known what features will be made

during each setup. The setup ®le positions the part_in,

part_out, and features with respect to the working coor-

dinate system of the machine so that the axis of the hole

to be drilled is vertical and the features (i.e. the hole),

part_in and part_out are in the correct relative location.

The ®xture is in the same location for both setups. The

base name, `plans_2.stp', for the Workstation-level and

Task-level plans is known, even though they have not yet

been written.

To execute the plan plans_1cell.stp, the user types at the

user interface for the Cell Controller: run_part1(plans).
In response:

1. The Cell reads the ®le plans_1cell.stp and starts traver-

sing the plan graph (shown in Fig. 3D). When it comes

to the split node (item 2 in Fig. 3D), it decides to process

node 3 (run the ®rst setup) ®rst.

2. The Cell reads the ®le setups_1.stp. Since it knows from

its plan that the part_in for the entire process is

`block.stp' and it knows this is the ®rst setup, it replaces

the `not_set' part_in for the ®rst setup with `block.stp'.

It also changes the part_out in the ®rst setup from

`not_set' to `simple_part_temp_1.stp'. It then writes

setups_1_temp.stp, a revised version of setups_1.stp.

3. The Cell sends a command message to the Workstation

telling it to make a plan for executing the ®rst setup as

speci®ed by setups_1_temp.stp.

4. The Workstation, on receiving this message, reads

setups_1_temp.stp and all the ®les it names. Then it

makes a stage-one plan for doing the work speci®ed

by the setup and sends a done status message to the

Cell. The plan it makes is very simple, since there is

only one feature to makeÐjust start, mill a pocket, and

end. It writes this plan in the ®le plans_1_1work.stp.
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The node to mill a pocket includes the name of the type

of tool to use, the feed rate, the spindle speed, the hori-

zontal stepover to use, and the vertical pass depth. The

plan includes the name of the setup ®le.

5. The Cell, on learning that the Workstation has completed

planning for the ®rst setup, sends a command message to

the Workstation telling it to execute that plan.

6. The Workstation, on receiving this message, reads the

®le plans_1_1work.stp, the ®le setups_1_temp.stp, and

the ®les named in that setup ®le. The Workstation sends

an open setup command message to the Task, which

reads the setup ®le and gets ready to run. This implicitly

includes ®xturing the workpiece as speci®ed by the setup

®le.

7. The Workstation starts traversing the (start-mill-end) plan

graph. Traversing the start node results only in checking.

When the mill node is reached, the Workstation plans

four executable operations to carry out that node:

start_nc; change tool; adjust coolant (on); and ®nish_mill.

It then executes these operations in order. Executing the

last of the operations results in the pocket being milled.

For any operation requiring a tool, a speci®c tool is

selected from the tool inventory. The method of execut-

ing an operation is described immediately following.
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8. To execute an operation, the Workstation ®rst writes a

command ®le, and then sends a command message to the

Task, telling it to generate NC code and giving it the name

of the command ®le. The data section of a sample

command ®le (for the hole drilling operation that occurs

later) is shown in Fig. 3F. Each command ®le describes

the operation and the plan step that gave rise to the opera-

tion. If the operation is performed on a feature (as the

®nish milling operation is performed on a pocket, for

example) the command ®le also describes the feature.

The Task, on receiving the message, generates an NC-

code ®le and returns a done status message. The Work-

station then sends an execute_nc message to the Task,

telling it to execute the NC code, which the Task does.

9. The Workstation next handles the end node of its plan, for

which it generates two operations, adjust coolant (off) and

end_nc. These are executed by Task as described imme-

diately above. That completes execution of the Worksta-

tion plan for the ®rst setup. The Workstation then sends a

done status message to the Cell.

10. The Cell continues to traverse its plan, ®rst going back to

the split node (to see what might be done next) and then

deciding to do the second run_setup (item 4 in Fig. 3D).

The process outlined in paragraphs 2±9 above is repeated

for the second setup, resulting in the hole being drilled.

Then the Cell ®nishes traversing its plan, cleans up, and is

ready to do something else.

9. Conclusion

The FBICS architecture provides for planning and control

of machining and inspection of discrete parts in a hierarch-

ical control system. The FBICS implementations demon-

strate that the architecture, including its speci®c

modularization of manufacturing activities, is usable for

industrial application. The implementations also demon-

strate the feasibility of feature-based manufacturing and

the usability of the ALPS process planning language,

STEP AP 224, and STEP data handling techniques and

tools, generally. FBICS demonstrates the feasibility and

desirability of two-stage planning. FBICS is unusualÐ

possibly uniqueÐin (i) its ability to generate plans for

several levels of a hierarchical control system, (ii) its imple-

mentation of two-stage planning, and (iii) its use of STEP

AP 224 for part modeling.
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